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INTRODUCTION

Galactic nebulae which show emission-line spectrum are of two

types, that is, diffuse and planetary nebulae. The diffuse nebulae are

normally irregular, often of low density and surface brightness, and

sometimes extensive; whereas, planetary nebulae are generally symme-

trical and compact and usually have a higher surface brightness and

density than the diffuse bright nebulae. The spectra of these gaseous

nebulae as well as those of certain stars, including the Sun, show

strong emission lines owing to allowed and forbidden transitions of a

number of "heavy" elements (atoms and ions other than H and He), such

as N, O, Ne, S, Cl, Ar, P, Fe, Ca, Mn, Cr, V, Ca and Ni in various

stages of ionization. In addition Mg I lines have been observed and Na

and K are known to exist in planetary nebulae although not in great

abundance.1

Interpretation of gaseous nebulae requires proper evaluation

of their geometrical structure,physical state, and chemical composition.

One must be able to interpret the spectra quantitatively in terms of

physical parameters and chemical composition of the emitting medium.

Consequently, collisional cross-sections for allowed and forbidden tran-

sitions and line intensities are necessary for the proper interpretation

of the properties of gaseous nebulae. One type of excitation mechanism

which is possible is e + A -+ e + A

This paper considers excitations of neutral atoms by inelastic

scattering of incident electrons. Simple antisymmetrized product Slater
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Wave functions describing the initial and final states of the atom are

used. Total cross-sections using the Born Approximation are calculated

for the following excitations: Li(2s -* 2p), Li(2s + 3p), Na(3s - 4p),

Mg(3p - 4s), Ca(4s + 4p) and K(4s -* 4p). Since intensities of the

emitted radiation are also of importance in interpreting gaseous nebu-

lae, the line strength of the Na(3s -+ 3p) transition is calculated using

Slater Wave functions and compared to an experimental result.

Typical electron temperatures in gaseous nebulae are 104 OK.

If a Maxwell distribution is assumed the average kinetic energy at this

temperature is about .8 ev. This is below the threshold energy of all

of the transitions calculated here. There are of course electrons with

energies higher than this average and these appear in the tail of the

velocity distribution. In particular for a Maxwell distribution at

104 oK, .9% of the total number of electrons have energies higher than

5 ev. This is above the threshold of all the transitions considered

here, the largest threshold being 3.75 ev.

Due to the relatively low abundance in planetary nebulae of

the elements for which the total cross sections are calculated here, the

particular cross sections given may not be of great interest to those

studying these nebulae. However, by using either of the programs given

in the Appendix it is relatively simple to obtain cross sections for

any desired s -* p transition. All one needs are the threshold energies

and the configuration of the atom to allow the determination of the

effective atomic numbers. These effective atomic numbers.are calculated



using S~ater's rules which are given in the next section. Any deter-

mination of the effective atomic numbers using these rules takes only

a few minutes.

The reason for choosing Li, Na and K was so that a compari-

son could be made with another readily available calculation, i.e.

(Vajnshtein, Opykhtin, Presnyakov).2 Ca and Mg were chosen because

they were originally thought to be of importance in the emission spec-

tra of comets.

The method is not expected to yield reliable results near

threshold but should give answers within a factor of 2-7 for incident

electron energies about 3-4 times threshold.
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WAVE FUNCTIONS

Two types of wave functions are used. Both have the general

form nkm = R (r)Y (2) where R n(r) is a Slater radial wave function

and Y (() is a spherical harmonic. In one type which will be referred

to as Slater Wave Functions I (SWFI), the t-dependence of the Rnk(r)'s

was deleted. This is equivalent to setting Z= 0 in the radial func-

tion for all n. The general form of the SWFI is given by the following:3

R1 (r) = N1 exp(-Zlr/ao)

R2 (r) = N2 r exp (-Z2r/2a o ) + A21RI(r)]

R3 (r) = N3 r
2 exp(-Z 3r/3a o ) + A32R2 (r) + A31R1 (r)]

. ' n-1
R n(r) = NErn-l exp(-Znr/na ) + AnjR(r)]

j=1 J

The N 's and A 's are constants and are determined from the
n nj

orthonormality conditions <R., R.> = 6... Thus,

1i-in+j+1

An = N. AniA. - (n+j) Z jn-1

j n

and

Nj= [(2j)! (a ) 2j+l An
1 n=1



To make the radial integrations simpler the radial wave func-

tions may be rewritten in the following form,

n Z

R (r) = N F rn-j exp(- nl-j (1)
n n n,n+l-jn+-j a

where the F 's can be determined from
n,j

n+l-j

F = N F A (2)
n,j jK=1 n,n+l-K n+l-K,j

and we choose F = 1i, A = 0. (2')
n,n n,n

The Z 's are effective atomic numbers which are determined by
n

the following Slater rules.4

"For determining Zn = Z-s, the electrons are divided into the

following groups, each having a different shielding constant: is; 2s,p;

3s,p; .3d; 4s,p; 4d; etc. (The s and p are grouped together but.the d

and f are separated.) The shells are considered to be arranged from

the inside out in the order named.. The shielding constant s for any

group is found as follows,

1. Nothing from any shell outside the one considered.

2. An amount 0.35 from each other electron in the group consi-

dered (except in the Is group, where 0.30 is used instead).

3. If the shell considered is an s,p shell an amount 0.85

for each electron with total quantum number less by one, and an amount

1.00 from each electron still further in; but if the shell is a d or f,

an amount 1.00 from every electron inside it."
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The second type of wave functions which are used allow for an

*£-dependence in the radial function. This is accomplished by writing

different radial functions with different £-values for the same n. These

radial wave functions are referred to as Slater Wave Function II (SWF II)

and are given by the following:

R10  N10 exp (-Zlr/ao)

R20 = N;0 [r exp (-Z2r/2a o) + A201 R10 J

R21 = N21  Ir exp (-Z2r/2ao)

. n-i

Rn =Nn [n-l exp (-Z nr/nao ) + IA , Rn' nn ' =£+n

The A 's are the amount of the Rn ,'s with n' < n - 1 which must ben£n, n,

added to R to make the R 's orthonormal. The N 's and the A ,'sn n9 uR rni

are again determined from the orthonormality conditions

<R n F n , > = 6nn

________ -- - n-n'+
+n'+ n'-

A N = -N [(n+n') Z a  - A A K n>n'>£
n n K=1
I+

n+l
a2 n-1

and Nn£ =  [ (2n) . - A2 -

n

Here again the radial functions can be put into a form which make the

radial integrations simpler. Thus



n- Zn r

R (r) = N F rn exp (n+1-(3)
nk nt n, k, n+i-j n+l-j) a

3=1 0

n+l-j
where Fn,, N Fnn+ K A and A if n<j<

n,,j K=1 n,,n-K n+1-K,Z,j anif -K=cosF

and we choose F =1.
ntn
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BORN APPROXIMATION

The Schrodinger equation for the atom plus incident electron

is

2 2 2  2 2 2
SV + V.2 + E + Ze + Ze e

m r 2m i T - j ri _

Y e 0

j=l r - r.r

where ET.is the total energy,

r refers to the position of the incident electron,

r . refers to the position of the incident atomic electrons,

r = (r . . . r 2 ).

--

Now expand Y(r,r e) in terms of a complete set of orthonormale

atomic wave functions 4n(re) satisfying the equation

4:2 Z Z Ze 2 2
S V 2 e E ()=0 (5)L2m i r. - n n e
i=0 i =1 j i j Ir. - r.

where E are the associated eigenenergies. Now, set
n

'(r,re) = SzF (r) 4(r e) (6)

where S denotes a summation over the discrete states and an integration

over the continuum states.

Substitute equation (6) into equation (4), multiply by 1i (r )

and integrate with respect to re to obtain



2 2 Ze2  Z Ze Z 22 2 +_ V. + E + + " e**

S r 2mi= j=l r ij I rjl

z e 2
- e F (r) (r ) (r) dr = 0 (7)
j=1 + I  e n e e

r r

Now use equation (5) to obtain

42 2  2 *
-- [V + Kn2  Fn (r) = () V (r,re) Y(r,re ) dr (8)

Ze + e (9)
V(r,rr) =  d

e r r
j=1

is the interaction energy between the incident electron and an atom com-

posed of Z electrons and protons, and the wave number K is given by
n

2  2m
S 2 (ET En)
n 2 T n

Now suppose the incident electron has wave vector K. and impinges

on an atom in state with energy E.. Then the asymptotic behavior of Ff(r)

for larger r has the form

iK r'
+4. f
iK.r' e

rFf( 4 ') n e 6 fi + r' ff(6,) (10)

where ff(0,4) is the scattering amplitude corresponding to the excitation

4.

of the fth state of the atom and 68, are the polar angles of r referred

to the direction of incidence as polar axis.

Consider the .equation for the Green's function

SV2 + K G (r,r') = 6(r r')
n



then the solution to equation (8) can be written as

iK. r' 2 *
Se G(rr') (r V (rr e )  (rre) dr dr (11)

f 6 + Jfi 2 ee e e

In order that Ff should have the correct asymptotic form given by equa-

tion (10) we find5

iKf Ir-r' I
e

G(r,r') = - .(12)

where K is a wave vector in the direction of r.
f

Now

22 2r

-r' = (r + r' - 2rr' cos 6) = r 1 os 6

1 1
So for large r' i - r' (13)

^rK r Kfr

and K - Kr' - cos = '- r (14)

iKfr' * *
f -K r

+ A e e f
Then G (r,r') -e e (15)

47r'

Substitute equation-(15) into-Equ&tio-n (-t) to obtain

4. , iK r' . .
iK .r  m e -iKrf'r * 4 4

Ff( ) = e 6fi - f e V (r) V ,r)(r re)dr dr (16)
e fi 2rt r f e ee e

Comparing equation (16) with equation (10), we see that

m, =-iKf* ..r 4

,) re ) V (r,re ) (rr e ) dr dr (17)



To obtain the Born scattering amplitude make the assumption

that the incident electron interacts only slightly with the target

atom so that its wave function may be closely approximated by the

plane wave eiKir which would be the correct wave function in the

absence of all interaction. This approximation should be valid when

the speed of the electron is great in comparison to that of the elec-

tron in the target atom. This is essentially equivalent to the re-

quirement that K.a>>l where a is the range of the electron-atom

interaction. With the above assumption substitute

iK.r

(r,re) = e i(re)e i e

into equation (17) Then

m .Ki - Kf) .r
f- 2 V( )dr (18)

2 2

where

Vfi () f (r) V (r,re) rC(~e) dre (19)

Now substitute equation (9) and equation (19) into equation (18) and use

Bethe's integral6

44 4+
iK-r iKr

e + 411
dr = -

2 K2S Ir-r2 K

to'obtain
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2Z * + / iKr -+
ff(o,4) = -; f (re)i (r e / dr

iKr.
2m r ) (re) dr

K22 f (re) e e e
j=1

where K = K. - Kf and-hK is the momentum change of the incident electron.

The first term vanishes due to the orthogonality of the atomic

wave function.

So ( in atomic units)

Z iK'r

f(0,) = 2 f (-) e i(re) dr (20).
e e

Equation (20) can be simplified by writing 1f(re) and i(re) in terms

of antisymmetrized product wave functions. Thus

f(re f(rl...rz) = (Z ) cij...K i(rl j(r2 ) K(r Z )

and

Vi(re i(rl...r) = (Z £m...n Z 1 m 2 .. n(')

where Eij...K is the permutation symbol

+1 even permutation

ij...K =  i0 any two indices the same
-1 odd permutation
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Consider the expression

-+

Z iK'r t

f (r e) e (r)dr= f e 1 e e

iK'r

Sdr l . . . d r * (r...r) e(rl...
t=l

4-4

=-- .ij. K Xm. .. n dr ... dr i.(r )... rZ) e t 1 (r )... (r ) (21)
I Z j 1 ... K EKm...n iK Z 1jr 1) n

t=1

In order to simplify equation (21) consider the case t = 1.

Then equation (21) becomes

.iK.r
1 * 1 +
S(r) e 6 ...6

Z ij .. K Zm...n 1 i 1 jm " "Kn

where 'i(rl) is the final state wave function that does not appear in the

initial state wave functions.

1 Ed ,iK. r

2! ij...K Rj... drl i (rl) e P(r I ) (22)

Now use the relationr. e e y..= (P-1) 6 where P is the

number of subscripts on the c By. . . 's.

Then equation (22) becomes

iKr11 f , * 1 +
= , (Z-1)!6 drl Pi  (r ) e 1 (r

1 diK'r 1
Z drl i  (rl) e i(riJ
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But this shows that all of the terms in the sum in equation (21) are

equal. And since there are Z terms in the sum equation (21) becomes

fd f (') e r i(r )" f

where l f() and i(-) are the final and initial state wave functions of

the excited electron.

Using Slater Wave functions the expression for the Born scat-

tering amplitude becomes

2 d 2  iK~rf(6, ) = dr Rnf ( r ) Rn. k i ( r ) <R f mf l e i K r  m ' >

where

iK'r iK"r
<fmf eKr.m> d Y () e ym (01)

S£fmf K

To do the angular integral choose K to be along the z-axis and

use the expansion

v=0

where j (Kr) is a spherical Bessel function of the first kind.

For an s + p excitation the angular integral becomes

<1 mf le rI oo> = i 3 ijl(Kr)
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To do he radial integral for SUF I use equation (1) which gives the

R 's in the terms of the F's.
n

Finally the scattering amplitude for an s - p excitation

becomes (for S\T I)

2/3 nn. (a. -2)!

f(K) = F F jK

4 j=1 nf,n f+-j n.,ni +l-K ajK
K i l f p

K=1...n. jK

K (ajK1) sin (ajK.K-7/
2 ) + pjK cos (ajK-l) e.jK-/2 (22)

where

ajK = n + n + 2 - j - K, (23)

nZfl-j n.+l-K
n fl-j _n_+1-K_(24)

bjK = [ + ] , (24)
j n.+l-K

nf+l-j 
1

-1 K 2 2
j = tan ( ) and p b + K
jK bjK jK jK

For an s - p excitation the angular integral remains the same when SW II

are used. In this case use equation (3 ) for R (r) and R (r).
Sonff nforan excitationwithS II

So for an s + p excitation with SWF II
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2VjN N
n t. n.Z.

K i f r

I 1

(a -2) f
K- K(a.K-l) sin (a e6. -r/2) + pK cos (a. 1). -2] (25)

PajK jK jK K jK 3K K

jK

Total cross sections were also calculated using an effective

potential of the form

2
-C K2 r-r

r - r

In dimensionless units

-C( 1 )2 (Ka)2 r ) a
a o a 0

o o

V ( r- ')=-

- r

+ + e

Ir- r'

Now choose

C 2 2- =Z E
,a T

where Z is the atomic number of the target atom and ET is numerically

equal to the threshold energy in Rydbergs. The effective potential has

an overall effect of replacing the Born scattering amplitude by

f(K)= f 222f(K) f Born (K)/ + Z ETK )
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TOTAL CROSS SECTION

The total cross-section is given by

K, 2
= If(O,4)I d .

T K.

.> Since our V(r) has azimuthal symmetry

dQ = 2q sin ed6

the total cross section becomes

T KOT K i f(O)2  sin d6.

0

Now from conservation of momentum (hK is momentum vector) we get

2 2 2
K = K + K - 2K.K cos 6i f 1 f

where hK is the momentum transfer and e is the an between K. and K

Then

2KdK = 2K.K sin Od6
if

or

sin Ode
KdK

If

Now at e = 0

2  2

(K ) = (K. -K 2 or K . K.-K
mmn f mn i f



and at 6 =

(Kmax ) 2 = (Ki + or Kmax K. + K

From E K2 and Ef = Ei - E where Ef is the energy of the scattered elec-
f i T f

tron, E. is the incident electron energy and ET is the threshold energy

we get

Km x = K. K = (E) (E ) =- () (1 - )
mm ' f i f f

And so the integral for the total cross section becomes

K
Smax

T 2J dK KIf(K) 2  (26)

K.
min

Slaters' rules are used to determine the effective atomic num-

bers Z 's. These values are used to calculate the orthonormality constants
n

A n 's and.N 's for the SWF I and the A 's and N 's for SW II. The
nj n n9n nR

F n's and F nj's are in turn calculated from these orthonormality constants.

These results are then substituted into equation (22) for STF I and into

equation (25) for SWF II. The scattering amplitude thus obtained must

be squared and integrated over the momentum transfer according to equation

(26).

The following cross sections were calculated using both SWF I

and SWF II: Li(2s - 2p), Li(2s - 3p), Na(3s - 4p), Mg(3p - 4s), Ca(4s -- 4p)

and K(4s - 4p). Two computer programs which were written to do the cal-

culations are given in the Appendix.. The first program calculates the
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total cross section using SWF I as follows: First the ajK'S given by

equation (23) are calculated. The the b K's equation (24) are calcu-

lated. Next, the F 's equation (2') and the A 's equation (2') are
nn nn

initialized to 1 and 0 respectively. The N.'s and A .s are calcula-
j nj

ted next. These must be calculated together since they depend upon

each other.: Then using the calculated N.'s and A is the F .'s
j nj n3

equation (2) are calculated. Finally the last part of the program cal-

culates the scattering amplitude f(K) equation (22) squares it and in-

tegrates If(K) 2 over the momentum transfer using Simpson's rule as an

approximation to the integral.

The second program calculates the total cross section using

SWF II. This program calculates the radial integral in addition to

the integral over the momentum transfer. Thus, the N nj.'s and the A njls

are calculated first. Then the radial integration is done and finally

integral over the momentum transfer is done. Simpson's rule is again

used for both of these integrations.

The results of the calculations are given in graphic form on

the following pages. These results are compared with the calculations

of Vainshtein, Opykhtin, and Presnyakov (VOP) and with experimental data

where available. It was found that the difference in using SWF I and

SWT II for all of the calculated excitations was less than about 5%.

The data are therefore only plotted for one set of wave functions.

Agreement with VOP is very good for the Li(2s -) 2p) transition.

Both calculations are high with respect to the experimental data given

in reference ( 9). Agreement with VOP for the Li(2s - 3p) transition



is not as good with VOP obtaining a peak cross section which is more than

3/2 times and at a lower energy than the SUF result. No experimental

data could be found for this transition. The SWF result for the

Na(3s - 4p) is about an order of magnitude smaller than.the VOP calcula-

tion up to 5 threshold units and a factor of 3-8 smaller for the higher

energies. However, the SWF cross section for this transition has an

oscillation in it. More will be said about this oscillation and attempts

to understand it (Z4 = 1.35 curve) in the conclusions. As can be seen

from the graph the SWF cross.section is closer to the experimental values

given in reference (9 ). No other calculations or experimental data could

be found for the Mg(3p 4s) and Ca(4s -' 4p) transitions. Good agreement

with VOP is obtained for the K(4s - 4p) transition. The cross section

peaks"at roughly the same energy but the VOP peak is about 50% larger

and does not tail off as fast.

All of the Modified Born results show the expected behavior

of-a lower cross-section at the lower energies with the approach to the

same value as the Born Approximation at the high energies.

These data are presented in tabular form in Tables I and II on

pages 27, 28 and 29.
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TABLE I

ELECTRON EXCITATION CROSS SECTIONS

(Units of ira )
o

Li (2s + 2p) Li (2s - 3p)

E Born Mod. Born Mod.
(7) ( 8 )  (9) ( 7 )

(threshold units) (SWF) Born VOP CC Exp. (SWF) Born VOP

1.16 .101(3) .961(2) .998(2) .284(2) -- .551(0) .399(0) .201(1)

1.64 .130(3) .125(3) .131(3) .564(2) -- .788(0) .518(0) .187(1)

2.00 .127(3) .122(3) .1 2 9 (3)a -- .159(2) .917(0) .667(0). .151(1)a

2.44 .119(3) .115(3) .122(3) a  -- .230(2) .102(1) .813(0) .127(1) a

3.56 .995(2) .966(2) .103(3) -- .239(2) .118(1) .101(1) .891(0)

5.00 .818(2) .797(2) .85 0 (2)a -- .213(2). .120(1) .107(1) .631(0)a

6.76 .674(2) .659(2) .6 9 2 (2)a -- .186(2) .115(1) .105(1) .477(0)a

11.24 .475(2) .465(2) .501(2) .161(2) .976(0) .911(0) .288(0)

17.00 .351(2) .345(2) .3 7 5 (2 )a -- . .156(2) .809(0) .765(0) .190(0)a

!24.04 .271(2) .266(2) .298(2) -- .144(2) .675(0) .643(0) .133(0)a

a - Graphically interpolated



TABLE I

(cont.)

Na (3s 4p) Mg (3s - 4p) K (4s 4p) Ca (4s 4p)

Born(b) Mod. Born Mod. Born Mod. Born Mod.
(SWF) Born VOP Exp (SWF) Born (SWF) Born VOP(7) (SWF) Born

.266(0) .211(-1) .320(1) -- .753(-1) .195(-1) .103(3) .417(2) .135(3) .411(2) .294(1)

.211(0) .187(-1) .360(1) .232(0) .214(0) .842(-1) .130(3) .597(2) .187(3) .774(2) .112(2)

.194(0) .245(-1) .347(1) .234(0) .253(0) .119(0) .125(3) .611(2) .186(3)a  .866(2) .161(2)

.191(0) .381(-1) .311(1) .230(0) .273(0) .148(0) .115(3) .596(2) .1 8 2 (3 )a .902(2) .205(2)

.209(0) .740(-1) .222(1) .223(0) .279(0) .178(0) .931(2) .529(2) .159(3) .873(2) .264(2)

.219(0) .103(0) .170(1) .214(0) .261(0) .183(0) .746(2) .452(2) .135(3)a  .786(2) .288(2)

.219(0) .120(0) .132(1) .193(0) .236(0) .175(0) .604(2) .383(2) .114(3)a  .690(2) .289(2)

.196(0) .124(0) .839(0) -- .187(0) .148(0) .414(2) .280(2) .821(2) .526(2) .261(2)

.169(0) .120(0) .585(0) -- .149(0) .122(0) .301(2) .212(2) .595(2) a  .409(2) .225(2)

.144(0) .109(0) .426(0) -- .121(0) .102(0) .230(2) .166(2) .457(2)a  .326(2) .193(2)

a - Graphically interpolated

b - Additional points calculated, n = 1.02, a = 0.148; n = 1.04, a = 0.195; n = 1.08, a = 0.241.



TABLE II

ELECTRON EXCITATION CROSS SECTIONS FOR Na (3s -* 4 p) USING Z41 = 1.35.

(Units of ra2).

E (Threshold units) 1.16 1.64 2.00 2.44 3.56 5.00 6.76 11.24 17.00 24.04

Born (SWF) .469(0) .477(0) .555(0) .657(0) .818(0) .883(0) .878(0) .781(0) .664(0) .563(0)

Mod. Born .313(-1) .581(-1) .119(0) .202(0) .367(0) -.478(0) .532(0) .537(0) .489(0) .433(0)



LINE STRENGTH OF Na(3s - 3p) LINE

The line strength for spontaneous emission in the dipole

approximation is given by10

s = (27)

i,K

where i and K number the degenerate sublevels of the upper state n

and- lower state m; and where the summation is over all possible

combinations of the sublevels of the upper state with those of the

lower state; and where

R = <nlm> (28)

It will now be shown how S is related to the Einstein coeffi-

cient for spontaneous emission. This will be done semiclassically in

the sense that the E and M field is treated classically while the par-

ticles are treated quantum mechanically. A correct quantum electrodyna-

mic treatment leads to the same results11

Maxwell's equations of motion for the electromagnetic field

are in gaussian units

4 - 1 E 47 --
V E = 47p (29) V x H -- J (30)c at c

- - 1 H - -
Vx E + - 0 (31) V H = 0 (32)c 2t



From equation (32). we see H = V x A. If this is substituted

into equation (31) and the order of the spatial and time derivatives

is interchanged we obtain

+ +t 1 BA
V x (E + ) = 0.

c at

4.
+ 1 BA 

Thus E + a V
c at

or E= V
c at

Substitution of the equations for E and H into equations (29) and (30)

2-)4-+ 1 V 2 -+ 1 3 A 4 7+
( + ) V A + 2 4 (33)c at 2 .2 c

c 2t

1 v .4 + 2
- A V A = - 4rp (34)

c at

where V x(V x A) = (V A ) - V2 has been used. Now choose the Lorentz

gauge so that

V A + = 0
c at

Then equations (33) and (34) become

2-
2- 1 A 4 (35)
VA- (35)

2 2 c

V2 2 = 4 (36)
C 2 t2
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Now, taking the curl of equation (35) we obtain

21 H 47 (37)V2~- . ... Vx J

c 2 c
at

Assume that the three cartesian components of J vary harmonically in

time with the same angular frequency w but not necessarily with the

same phase:

4 t -iwt * iwt
J (r, ) = 2 Jx (r) cos (wt- 8x ) = J (r) e- + (r) e (38)

x x x x x

where iO

Jx (r) = IJx( r) e

with similar equations for the y and z components. We are interested

only in the solutions for E and H that have the same frequency w. Thus

the x-components are given by

4-4 iwt * -iwt

Ex (r,t)= 21Ex(r) I cos (Wt - 0x) = E x() e + Ex (r) e (39)

( -4 -  -t -iwt 4- i)t
H ,t) 1 2H --r)I cos(wt - c) = H (r) e-ie + H (r)e (40)

where

SiX and H ( r ) = IHx( e x
E (r) = E(r e x

x x

Using equation (30) E is given in terms of H in a vacuum by

E(r) = x H (r). (41)W-
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-4- -- --

Substituting the expressions for J, H and E into the wave equation for H,

equation (37), wetobtain,

2 2 4f
(V + K) H(r) - x (r) K = w/c (42)

c

The retarded solution of the above equation is given by

4.- 1 xJ ) r iKIr -r' d3r' (43)
H (r) -> e e

c r - r'

Now

iKr- r' 1 iK(r - r' cos ) (44)
e - e (44

rr 
c

where 0 is the angle between r and r'.

The Poynting vector is

+- c .
-  +"+

(rt) - (rt) x H(r,t)]

Using equations (39) and (40) for E and H, we see that the average over

a period of oscillation has a z component

P (r) E() H (r) cos(t - x) cos (at -
z T x y x time

ave

-IEy(r) lHx( ) I cos (t - y) cos (Wt - ax time
ave

PJr) I I r) H (r) cos a -Ey(r) H (r)cos (ax y)
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Then

P(r) = 2 Re LE(r) x H ( ) (45)

Now we are only interested in those terms in the energy flux

that fall off as 1/r2 since only these correspond to radiated energy.

Choose the z-axis along the vector r which goes from the center of the

charge-current distribution to the point at which the field is measured.

Using equations (41), (43), and (44) we obtain

iK iKr -iKz' d r
H + ' e Jy(d) e
x re.

iK iKr (r -iKz' d3r'

y rc x

H z 0 (46)

S iK iKr J -iKz' d3r'
E -K eiJr(r') e
x re y

iK iKr -iKz' d3r
E - e J (r') e dr
y re c

E +0
z

Partial integration has been used to get rid of the derivatives

of c .. -Itegrand of H.. The above equations show that the asymptotic

fields are transverse to the direction of propagation. They also show

that only the component of the current perpendicular to the direction of

propagation contributes to the radiated energy.
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Substituting these fields into equation (45) we obtain

K2  eiK' d3 12 +-iKz' 3 r 2
z 2r2d x y

Generalizing the above equation to give the average energy flux in the

direction of K we obtain

P = K2 JK(r') e d r

2 rc
2Trr c

where JiK is the component of J perpendicular to K.

In most cases of practical interest the wavelength of the

radiation is many times greater than the linear dimensions of the cur-

-iK-r'
rent-charge distribution. This means that R'r' <<1 and e can be

replaced by 1 in the integrand of the equation for P . Then

2
z 22P z K 2 f J J(r) d3r 2

2rrr c

From equation (46) with the same approximation it is apparent that the

polarization of the radiation is determined by the total current vector

o =  f (') d r'

With J0 linearly polarized the integral in equation (47) can be replaced

by ' 2 sin2 6 where 6 is the angle between K and . Then the total

power radiated is

2 2 Tr iTK I 2 2 3
P 2- J r sin 6 ded4

2'r c

o 0

4K2  2

4Kc (48)



Equation (48) is also valid for non-linear polarizations.

To convert to quantum theory the classical expression for J

must be replaced by its quantum analog. We want to replace J by a

current density that is associated with an initial upper state uK and

a final lower state u , since energy is radiated during the transition
n

from K to n. It is natural to represent the current density as a pro-

duct of a charge density and a velocity and to take for the velocity

the momentum operator divided by the mass: -(ih/m)V. The charge den-

sity for a stationary state is expected to be the charge of the particle

times its position probability density i.e., elj 2 . However, we are

concerned here with a transition between states and so replace this by

eunuK. Thus we can replace J(r) by

St ie * -+-
J(r) - m Un(r)VuK(r)

m n K.

To get 0 we must integrate the above expression for J(r) over the coor-

dinates.

Thus

+ iei 3
J = u V ud r

o m n K

or
- e u* 3
o m n uKd

or 4 eJ - <n K> (o m "(49)
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dr
The matrix element of P is P = m .

dt

So 1 <nIPIK> = d <n IIK>. (50)
m dt

If an energy representation in the Schrodinger picture is used we have

-i nKt
<n(t) I K(t)> = <n(o) I-l K(o)> e

E - E

nK
where wnK 

n K

So
SiwnKt

-<in(t) K(t) dt <n(o) K(o)> e nK

4W 
iWnKt

= nK <n(o) Irl K(o)> e

= inK<n(t) r K(t)> (51)

Substituting equation (51) into equation (50) we obtain

- <n I K> = iwn <nlr K> . (52)

Substituting equation (52) into equation (49) we obtain

= iewnK <nl IK> (53)

Substitution of equation (53) into equation (48) gives the radiated power.

We can interpret this power as the product of the spontaneous rate of

transition from n to K and the quantum energy -wK = EK - E given off

in each transition.
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Thus

4K2  2 2 <nl>12
P 3c e nK

and the transition probability per unit time for spontaneous emission

(Einstein probability coefficient) becomes

4K2 e2
nK

Ank = <nrlK> 2

Using nK = Kc we obtain

4e 3

nK + 2AnK 3 i<nIrIK>1

The line strength is the sum over all possible combinations of the

(possibly) degenerate sublevels with those of the lower state of the

matrix element in the expression for AnK'

To calculate the line strength of the Na(3p - 3s) line we

need the effective atomic numbers Z for sodium. Using Slater's rules
n

we find: Z = 10.7, Z2 = 6.85 and Z3 = 2.20. From these values the A's

and N's can be found and substituted in Slater's radial wave functions.

The same result is obtained for the line strength of the Na(3p - 3s) if

either SWF I or SWIF II are used.

Thus we obtain (in atomic units)

for m = 0 r K d r= 2.76 e

for m = 1 f n r K dr = .799 I -e + ie IjKx y
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for m = 1 n d r = .799 Le + ie
n K x y

When these results are substituted into the expression for S the answer

is (in atomic units)

S = 22.9.

This compares reasonably well with an experimental value of 19 atomic

units given in reference 2.

The value obtained for the Einstein probability coefficient

is

A 6 -1
nK = 2.256 x 10 sec
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CONCLUSIONS

With thd exception of Na(3s + 4p) cross section the SWF cross

sections are roughly with a factor of 3-4 of VOP's results. In parti-

cular, there is very good agreement with VOP for the Li(2s - 3p) cross

section. One should realize that comparing one theoretical calculation

with another does not establish the validity of either.

The oscillation in the Na(3s 4p) cross section is discon-

certing. Normally such oscillations come from the interference of coupled

states, but couplings haye not been included in the SWF calculation and

so it was first thought to be a programming error. A second program was

written to serve as an independent check on the results of the first pro-

gram. In this program the radial integration was also done on the com-

puter. Numerous excitation levels of hydrogen using hydrogen wave func-

tions were calculated with both programs. Both gave the same results

and agreed with the results given in VOP. When SWF's were used the pro-

grams also calculated the A and N parameters. Both programs used the

same routine for calculating these parameters. So it was concluded that

the oscillation in the Na(3s - 4p) cross section was real.

By setting all of the A's individually equal to zero it was

found that only A4 1 3 significantly affects the cross-section. In par-

ticular by setting A4 1 3 equal to 90% of its calculated value the oscilla-

tion is removed. However, the cross-sections increase by about 60%.

Using the orthonormality conditions <Rn ,Rn,> 6nn' it can

be shown that
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A413 = - drr 2 R3 1 (r) [r 3 exp(-Z 4 r/4)]

0

Thus, the absolute value of A413 can be reduced by using a different

value for Z4 than that given by Slater's rules. The value obtained

for Z4 by using Slater's rules is Z4 = 1.00. By setting Z = 1.35 the

oscillation is removed. However, this increases the cross section to

3-4 times the original calculated value and the peak shifts toward

higher energy. This rather largei change in the cross section should

be expected since the A's, N's and F's all depend on Z4 and these

appear in the expression for the scattering amplitude f(K).

Thus it appears that the absolute value of A is too large.
413

This could be due to too large an overlap between R and the characteris-
31

tic part of R41 which is the factor in brackets in the above expression

for A4 1 3.
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APPENDIX A

The following programs were used to do most of the calcula-

tions related to this work. The first program does both the radial

iategral and the integral over the momentum transfer using Simpson's

rule as an approximation to the integrals. The first part of the

program down to and including statement 10 calculates the N n's and

A n's. Then the radial integration is done and finally the integral

over the momentum transfer is done.

The second program as given uses the SWF I. Only minor

modifications are required to use SWF II. In this program only the

integral over the momentum transfer is done as equation (1) is used

for f(K). This program will work for any s - p transition for which

n > n.. If nf < ni enough N's, A .'s and F 's may not be calculated.
f -I f i nj nj

Only the statements marked * need be changed to calculate the total

cross-section for other than s + p transitions for which nf > n..
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Read Initial and Final
Total Q. No. & Eff. Zn's

Read A parameters

Incident Energies

TE = Threshold energy

AAA = .1.732

XN = No. of pts for K

integration
NX = XN + 1

RN = No. of pts for R

integration

Calculate A ,'s and N. 's

Start R Integration

ALIMR = .0

BLIMR = 50.0

Initialize all radial wave

functions to zero at all

points of integration

&



Initialize all radial wave
functions at r = 0

Evaluate R (r) and Rh(r)

at each integration point

Return to x integration

DO 21 I = 1, 10

Calculate ALIM and BLIM

Initialize
XSUM (IN)-= .0

DO 54 IX = 1, NX

KX = - KX

Return to R integration

KR = 1

KR = -KR
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ANG = SIN (X*Y)/x -y cos(x*y)

/x

RIFA (IR) = RI (IR) * RF(IR)
*ANG

What
is the re-

ationship be-
tween: (IR,NR,KR)

0 and what is the sign> 0
of

KR

=0

RSUM = RSUM + 2.* RIFA (IR)

RSUM = RSUM + RIFA (IR)

RSUM = RSUM + RIFA (IR)

2U0

RANS = DELR * RSUM/3.

Return to x integration

I
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GX (RANS * RANS)/(X*X*X)

DO 53 IM = 1,5

AX(IM) = 1./(1.+(ZZ*A(IM)*X)
**2)**2

is rela-

tionship be-
tween (IX, NX,KX)

and what is the sign
of KR

<0 >0

=0

XSUM (IM) = XSUM (IM) + 2.*
FX (IM)

51

XSUM = XSUM (IM) + FX(IM)

52

XSUM XSUM (IM) + FX(IM)

53

XANS(J) = DELX * XSUM (J)/3.
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SIGMA (J) = CC*ANS(J)/TN(I)

56

~rRITE SIGMA (K)

A(R), TN(I), I

END
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Read Initial and Final
total

Q. No.'s & Eff Zn's

Calculate ajk's

Calculate bjk 's

Initialize F 's=l. and
A 's = 0. nn
nn

Calculate N.'s, A 's

WRITE N(J) and A(N,J), N, J

Calculate F(N,J)'s

WRITE F(Nl,JM) Nl, JM

101
READ XN, EI, 'ET, FX

Start Integration



Start Integration

Calculate A LIM, B LIM

KX = 1

102 Calculate YSUM

FX = (YSUM **2)/X**7

KX = - KX

What

is relation

ship between (IX,

<0 JX, KX) and what is sign >

of KX

103 XSUM = XSU'M + 2. *FX

g~- i-



I =  0 I

104 XSUM = XSUM + FX

7

105 XSUM = XSUM + FX

XANS = DELX*XSUM/3.

XANS = 24.*(C/NI)**2)

* (C(NF) **2) / (EI*ET) **ANS

WRITE EI, XANS

What is FX

<0 >0

END
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